An energy transduction mechanism used in bacterial flagellar type III protein export

نویسندگان

  • Tohru Minamino
  • Yusuke V. Morimoto
  • Noritaka Hara
  • Keiichi Namba
چکیده

Flagellar proteins of bacteria are exported by a specific export apparatus. FliI ATPase forms a complex with FliH and FliJ and escorts export substrates from the cytoplasm to the export gate complex, which is made up of six membrane proteins. The export gate complex utilizes proton motive force across the cytoplasmic membrane for protein translocation, but the mechanism remains unknown. Here we show that the export gate complex by itself is a proton-protein antiporter that uses the two components of proton motive force, Δψ and ΔpH, for different steps of the protein export process. However, in the presence of FliH, FliI and FliJ, a specific binding of FliJ with an export gate membrane protein, FlhA, is brought about by the FliH-FliI complex, which turns the export gate into a highly efficient, Δψ-driven protein export apparatus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Resolution pH Imaging of Living Bacterial Cells To Detect Local pH Differences

Protons are utilized for various biological activities such as energy transduction and cell signaling. For construction of the bacterial flagellum, a type III export apparatus utilizes ATP and proton motive force to drive flagellar protein export, but the energy transduction mechanism remains unclear. Here, we have developed a high-resolution pH imaging system to measure local pH differences wi...

متن کامل

FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella

For construction of the bacterial flagellum, flagellar proteins are exported via its specific export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane (TM) export gate complex and a cytoplasmic ATPase complex consisting of FliH, FliI, and FliJ. FlhA is a TM export gate protein and plays important roles i...

متن کامل

Genetic Characterization of Conserved Charged Residues in the Bacterial Flagellar Type III Export Protein FlhA

For assembly of the bacterial flagellum, most of flagellar proteins are transported to the distal end of the flagellum by the flagellar type III protein export apparatus powered by proton motive force (PMF) across the cytoplasmic membrane. FlhA is an integral membrane protein of the export apparatus and is involved in an early stage of the export process along with three soluble proteins, FliH,...

متن کامل

Self-assembly and type III protein export of the bacterial flagellum.

The bacterial flagellum is a supramolecular structure consisting of a basal body, a hook and a filament. Most of the flagellar components are translocated across the cytoplasmic membrane by the flagellar type III protein export apparatus in the vicinity of the flagellar base, diffuse down the narrow channel through the nascent structure and self-assemble at its distal end with the help of a cap...

متن کامل

A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system.

Biogenesis of the flagellum, a motive organelle of many bacterial species, is best understood for members of the Enterobacteriaceae. The flagellum is a heterooligomeric structure that protrudes from the surface of the cell. Its assembly initially involves the synthesis of a dedicated protein export apparatus that subsequently transports other flagellar proteins by a type III mechanism from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2011